Biomaterials for Biomolecule and Cell Delivery in Tissue Engineering Applications
Abstract
Advances in biology, materials science, chemical engineering, computer science, and other fields have allowed for the development of tissue engineering, an interdisciplinary convergence science. Our laboratory has focused on the development and characterization of biomaterials-based strategies for the regeneration of human tissues with the goal of improving healthcare outcomes. In a collaborative effort with physicians, surgeons, and other scientists, we have produced new material compositions and three-dimensional scaffolds, and investigated combinations of biomaterials with cell populations and bioactive agents for their ability to induce tissue formation and regeneration. We have examined the effects of material characteristics, such as mechanical properties, topographical features, and functional groups, on cell behavior and tissue guidance, and leveraged biomaterials as drug delivery vehicles to release growth factors and other signals with spatial and temporal specificity. This presentation will review recent examples of diverse biomaterials-based approaches for regenerative medicine applications and highlight emerging areas of growth.
Learning Objectives
1). Discuss injectable and 3D-printable biomaterials for use as tissue engineering scaffolds.
2). Discuss drug delivery systems for bioactive molecules in tissue engineering.
3). Discuss biomaterials-enabled cell therapies in tissue engineering.