J. Steven Alexander, PhD

LSU Health Sciences Center

J. Steven Alexander

Three-Dimensional Printing of Osteogenic Engineered Networks (OGEN) for Craniomaxillofacial Defects.

Dr. Steven Alexander is a professor in Molecular & Cellular Physiology is a vascular cell biologist and tissue engineer working on 3-D models of soft tissue and bone reconstruction using placenta derived stem cells using innovative vascularizing scaffold composites. A graduate of Boston University, (BS/PhD) he trained as a biomedical engineering at Vanderbilt University (1990-4) until joining the faculty at LSUHSC-Shreveport in 1994. He has joint appointments in the departments of Medicine and Neurology and has been funded by the NIH, AHA and DOD and has authored/co-authored 257 reports.

Team Bio:

Christen J. Boyer, PhD
Dr. Boyer is a postdoctoral fellow in the departments of Oral and Maxillofacial Surgery and Molecular and Cellular Physiology at LSUHSC-Shreveport. Dr. Boyer’s work at LSU Health includes the development of novel medical 3D printing technologies. He received his PhD in Molecular Sciences and Nanotechnology from of Louisiana Tech University and his previous degree was a B.S. with a concentration in chemistry, from Midland University in Nebraska. Dr. Boyer has previously been funded by NASA / LaSPACE and has filed numerous nanotechnology and 3D printing related invention disclosures and patents.

Jennifer Woerner, DMD, MD, FACS
Dr. Woerner is an assistant professor in the Department of Oral and Maxillofacial Surgery at LSU Health Shreveport Health Sciences Center. Dr. Woerner graduated from Florida Southern College before attending the University of Florida College of Dentistry, where she earned her doctorate of dental medicine. She began her residency training in oral and maxillofacial surgery at LSU Health Sciences Center and completed her medical degree in 2009. She completed her internship in general surgery in 2010. Following graduation from her residency, in 2013 she completed a fellowship in cleft and craniofacial surgery under Dr. G.E. Ghali. She currently works on the Ark-La-Tex Craniofacial and Cleft team and Shriners Hospital for Children Cleft Lip and Palate Team as a primary cleft and craniofacial surgeon. She is also the Fellowship Director of Craniofacial and Cleft Surgery and the Residency Program Director.

David K. Mills, PhD
Dr. Mills has been on the ‘road less traveled’ for over 40 years. He has met few fellow travelers during his academic odyssey. He holds a BA degree in Ancient History and a second BA in Classics from Indiana University. He received an MA degree in Biological Anthropology in 1984 and a PhD. in Anatomy and Cell Biology in 1999 both from the University of Illinois. He currently is a Professor of Biological Sciences and has a joint appointment in the Center for Biomedical Engineering and Rehabilitation Science at Louisiana Tech University. Mills’ has mentored over 94 graduate students (including 14 PhD students) towards their advanced degrees. He has received funding from DARPA, NIH, NSF, the Shell Foundation, the Biomedical Research Foundation, Louisiana Biomedical Research Network, and the Louisiana Board of Regents. His research is focused on the development bioactive therapeutics that prevents infection and advances tissue repair and regeneration, and customized drug-loaded 3D printed biomedical devices and bioprinted tissues.

Yuping Wang, MD, PhD
Dr. Yuping Wang is a professor in Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center – Shreveport (LSUHSC-Sh). Dr. Wang received her M.D. degree in Medicine from Harbin Medical University, China, in 1980 and her Ph.D. degree in Physiology from Medical College of Virginia, Virginia Commonwealth University, Virginia, USA, in 1994. In 1997, Dr. Wang jointed the faculty of LSUHSC-Shreveport, Department of Obstetrics and Gynecology. She is a placental biologist and her researches focus on placental trophoblasts, vascular cells, and mesenchymal stem cells and have been funded by NICHD and NHLBI, and is co-author over 120 publications.

Abstract:

While autologous or allograft sources for bone grafting remain a standard clinical platform for repair of cranio-maxillofacial defects, the availability of source material is limited, especially in pediatric patients, and harvesting tissues from secondary sites can be traumatic and cause complications. Synthetic bone grafts reduce risks in donor site morbidity and viral/prion transmission from allografts, but often the materials are strictly osteoconductive and need to be shaped to fit patient anatomies. Manufacturing patient specific synthetic bone grafts for craniomaxillofacial defects through three-dimensional (3-D) printing is not yet well established and the roles of nanotechnology and nanoparticles in regenerative medicine are not fully understood either. We have developed a 3-D printable, patient-specific synthetic bone graft platform impregnated with osteoconductive and osteoinductive nanomaterials. These osteogenic synthetic grafts are derivatized to covalently bind growth factors, guidance molecules and extracellular matrix proteins which allows for more sustained and extended release of growth factors to drive both graft mineralization and vascularization. The specific and controllable osteogenic features of this platform will permit enhanced programming of stem cells to facilitate and optimize mineral deposition, osteogeneis and bio-integration. These biomimetic hybrid chemistries will also provide a synthetic approach to create enhanced nanostructured coatings for existing devices and generate patient-customizable bioengineering materials for use in oral and maxillofacial regenerative medicine research.

CONTACT

Osteo Science Foundation
1650 Market Street, Suite 3600
Philadelphia, PA 19103
215-977-2877
855-891-2877 Toll Free
info@osteoscience.org

Osteo Science Foundation is an independent, privately funded 501 (c) (3) non-profit organization.

SIGN UP FOR NEWS

By submitting this form, you are consenting to receive marketing emails from: Osteo Science Foundation, 1650 Market Street, Suite 2600, Philadelphia, PA, 19103, US. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.