Simon W. Young, DDS, MD, PhD

University of Texas School of Dentistry at Houston

Simon W. Young

Development of a Compromised Maxillofacial Wound Healing Model for Bone Graft Evaluation

Dr. Young’s research interest includes the design of materials for the promotion of bone regeneration in the craniomaxillofacial complex.  He has broad experience in the fields of biomaterials, growth factor delivery, in vivo models, and characterization of bone and neovascularization.  As an oral & maxillofacial surgeon with experience treating traumatic defects and pathology, Dr. Young understands the unique challenges associated with the reconstruction of complex maxillofacial wounds. By designing a novel preclinical model of compromised wound healing, Drs. Young and Kasper hope to better understand the mechanisms which prevent successful bone grafting, and use these insights to design better therapies in the future.

Abstract:

Despite our understanding of bone regeneration in sites with an optimized underlying physiological environment, it is still poorly understood why bone grafting fails in the setting of the compromised wound (i.e. osteoradionecrosis, multiply-operated sites, etc.). Whether the defect lies in an inadequately vascularized environment, an adversely affected (or missing) progenitor cell population, the complicating presence of bacterial contamination, or a sub-optimal cytokine milieu, the relative contributions of these factors remains to be clearly elucidated. A clinically relevant, reproducible model of compromised wound healing would be invaluable not only to study these potential mechanisms of bone graft failure, but to inform future strategies to improve bone grafting in these situations.

The studies outlined in this proposal seek to build upon our established rabbit mandibular defect model to develop a new pre-clinical model of compromised maxillofacial wound healing for application as a clinically-relevant platform for the elucidation of key differences between compromised and non-compromised maxillofacial wound environments. The novel model of compromised maxillofacial wound healing will be characterized to determine if significant vascular, cellular, or cytokine expression differences are present between the compromised wound healing environment and non-irradiated controls. This model can then be utilized in future studies to characterize the efficacy of various standard bone grafting materials and aid in the fabrication of rationally-designed bone tissue engineering materials.

Publications accepted:

Stacey L. Piotrowski, Lindsay Wilson, Neeraja Dharmaraj, Amani Hamze, Ashley Clark, Ramesh Tailor, Lori R. Hill, Stephen Lai, F. Kurtis Kasper, and Simon Young. Tissue Engineering Part C: Methods. Mar 2019. ahead of print http://doi.org/10.1089/ten.tec.2018.0361 Full Text

CONTACT

Osteo Science Foundation
1650 Market Street, Suite 3600
Philadelphia, PA 19103
215-977-2877
855-891-2877 Toll Free
info@osteoscience.org

Osteo Science Foundation is an independent, privately funded 501 (c) (3) non-profit organization.

SIGN UP FOR NEWS

By submitting this form, you are consenting to receive marketing emails from: Osteo Science Foundation, 1650 Market Street, Suite 2600, Philadelphia, PA, 19103, US. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.